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In nature, gregarious animals, insects, or bacteria usually exhibit paradoxical behaviors in the form of group fission and fusion,
which exerts an important influence on group’s pattern formation, information transfer, and epidemiology. However, the fission-
fusion dynamics have received little attention compared to other flocking behavior. In this paper, an intermittent selective
interaction based control algorithm for the self-organized fission-fusion behavior of flocking system is proposed, which bridges the
gapbetween the two conflicting behaviors in a unified fashion. Specifically, a hybrid velocity coordination strategy that includes both
the egalitarian and selective interactions is proposed, where the egalitarian interaction is to maintain the flock’s order and achieve
the fusion behavior while the selective interaction strategy is for the response to external stimulus information and generates the
fission behavior. Numerical simulations demonstrate that the proposed control algorithm can realize the self-organized fission-
fusion behavior of flocking system under a unified framework.The influences of the main control parameters on the performance
of the fission-fusion behavior are also discussed. In particular, the trade-off parameter 𝛼 balances the exploration (fission) and
exploitation (fusion) behaviors of flocking system and significantly enhances its movement flexibility and environmental adaptivity.

1. Introduction

In nature, gregarious animals, insects, or bacteria often aggre-
gate into a cohesive group to gain some survival advan-
tages, such as reducing predation risk, improving foraging
efficiency, and saving individual energy [1–4]. Within these
grouping species, group formation is usually a highly
dynamic process: group size and composition may change
frequently during the life time of members by group splitting
ormerging, which is usually referred to as the “fission-fusion”
behavior [5, 6] (see Figure 1).

The term “fission-fusion” was firstly introduced by Hans
Kummer [7] to describe the social system of a few taxa of
nonhuman primates, such as chimpanzees, geladas, and
hamadryas baboons, that change the size of their groups
by means of the fission and fusion of subunits (called
parties or subgroups) [8]. As a matter of fact, fission-fusion
behavior is a commonly seen phenomenon in nature. For
instance, Bechstein’s bats usually aggregate into a large group
during pregnancy and lactation for thermoregulation and
split into smaller subgroups in the post-lactation period

[9]. European starlings often gather into a giant swarm to
enhance the possibility of finding food and rapidly segregate
into separated subunits in the presence of predator’s attack
[3]. On the other hand, the fission-fusion behavior is also
of practical significance for some artificial flocking systems.
For example, a group of unmanned aerial vehicles (UAVs)
can gather into a cohesive flock to carpet bomb enemy’s
targets and split into smaller clusters to avoid the attack of
anti-aircraft fire.The autonomous underwater vehicle (AUV)
swarm that is executing the seabed exploration task may
aggregate into a small group to go across the narrow tunnel
and expand to its original state to monitor the mission
area. Therefore, investigation on the fission-fusion behavior
of flocking system is of both theoretical significant and
application value.

Over the last decades, scientists have been working vig-
orously on the underlying mechanisms of flocking behavior.
In [10], a famous flocking model (namely, “Boids”), with
three heuristic rules (cohesion, separation, and alignment),
was proposed to animate the bird flocking behavior. Later,
a simplified discrete-time flocking model for self-propelled
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Figure 1: Typical fission-fusion behaviors of flocking system in nature. (a) European starlings, Sturnus vulgaris, over Rome [3]; (b) shoal of
sardines, in Kwazulu-natal, South Africa; (c) Merinos d’Arles sheep, Ovis aries [6]; (d) segregation in mixed cocultures of primary goldfish
keratocytes (PFK, red) and EPC fish keratocytes (EPC, green) [18].

particles considering the alignment rule only was introduced
in [11]. In addition, a zonal model was proposed in [12],
which is able to produce some typical collective behaviors
(such as swarm, torus, dynamic parallel, and highly dynamic
parallel group) by adjusting certain parameters. In general,
these worksmainly deploy the egalitarian interaction method
and focus on the group fusion aspect; little attention has been
paid to the fission behavior.How a randomly distributed flock
forms a coherent group and splits into multiple subgroups in
a unified manner remains largely unknown.

Recently, owing to the advancements in the high-
resolution spatiotemporal flocking data acquisition and anal-
ysis techniques, more and more lines of evidence have
demonstrated that the selective interaction, rather than the
egalitarian interaction, is more effective in the collective
response of flocking system [13, 14]. A selective interaction
based hierarchical structure was found in pigeon flock’s
directional choice, which was proved to bemore flexible than
the egalitarian strategy [15]. In [16], a hybrid control architec-
ture, combining both compromise (egalitarian interaction)
and leadership (selective interaction), was proposed to drive
the group’s movement decisions. A route-dependent switch
mechanism between hierarchical and egalitarian strategies in
pigeon flocks was found in [17], which revealed that pigeons
tend to follow the average of neighbors while moving along a
smooth trajectory and select a certain leader to follow when
sudden turns or zigzags occurs. Selective interaction, which
implements the information transfer by following a specific
leader in an implicit manner, shows significant potential in
the fission behavior of flocking system.

Inspired by the above empirical evidences, an intermit-
tent selective interaction based control algorithm is proposed
for the self-organized fission-fusion behavior of flocking
system. The main contributions of this paper are as follows.

(i) A specifically designed intermittent selective inter-
action behavior is integrated into the conventional
average velocity consensus scheme and endows the
flock the capability of spontaneous splitting in the
presence of external stimulus information.

(ii) Aweight adjustment strategy is designed to automati-
cally balance the egalitarian interaction and intermit-
tent selective interaction in different environments,
which guarantees the stability and environmental
adaptability of flocking system.

(iii) A dynamic threshold value for the fission behavior is
designed based on the order parameter of individuals,
which make the flock more flexible in the group
fission-fusion behavior.

The rest of this paper is organized as follows. In Section 2,
the coordinated control problem for the self-organized
fission-fusion behavior of flocking system is proposed and the
pitfall of the conventional velocity consensus based egalitar-
ian interaction in flocking control is analyzed. In Section 3,
a unified fission-fusion control framework is established by
introducing the intermittent selective interaction into the
egalitarian interaction scheme and a dynamic weight balance
strategy is designed for the group fusion and fission behavior.
Numerical simulations are provided in Section 4 to verify



www.manaraa.com

Complexity 3

the effectiveness of the proposed control algorithm and some
concluding remarks and future work are drawn in Section 5.

2. Problem Formulation

Consider a flocking system consisting of 𝑁 identical mem-
bers; each individual is governed by the following double
integrator dynamics:

̇𝑥𝑖 = V𝑖

̇V𝑖 = 𝑢𝑖 (1)

where 𝑥𝑖 ∈ 𝑅𝑛 is the position vector of individual 𝑖, V𝑖 ∈𝑅𝑛 denotes its velocity vector, and 𝑢𝑖 ∈ 𝑅𝑛 represents the
acceleration vector (control input) acting on it.

Constrained by the limited sensing ability, each member
can only communicate with its nearby neighbors within a
specific range [20]. Hence, the neighboring set of individual 𝑖
can be denoted by

𝑁𝑖 (𝑡) = {𝑗 : 𝑑𝑖𝑗 ≤ 𝑅, 𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑁, 𝑗 ̸= 𝑖} (2)

where 𝑑𝑖𝑗 = ‖𝑥𝑖 − 𝑥𝑗‖ denotes the Euclidean distance
between individual 𝑖 and 𝑗, and𝑅 is the sensing radius of each
individual.

Generally speaking, the collective behavior of flocking
system is generated by both the local interactions with its
nearby neighbors and the external environment [1]. Conse-
quently, the control framework for the self-organized fission-
fusion behavior can be roughly formulated as

𝑢𝑖 = 𝑢in𝑖 ( ∑
𝑗∈𝑁𝑖(𝑡)

𝑢 (𝑥𝑖, 𝑥𝑗, V𝑖, V𝑗)) + 𝑔𝑖𝑢out𝑖 (3)

where 𝑢in𝑖 denotes the internal force exerting on individual𝑖 from its nearby neighbors, 𝑢(𝑥𝑖, 𝑥𝑗, V𝑖, V𝑗) is a specifically
designed function for the interaction force between indi-
vidual 𝑖 and 𝑗, and 𝑢out𝑖 is the external force from the
environment. In addition, 𝑔𝑖 is deployed to show whether
individual 𝑖 is influenced by external information. If 𝑔𝑖 = 1,
we say that the motion of individual 𝑖 is governed by both its
nearby neighbors and surrounding environment; otherwise,𝑔𝑖 = 0, and it is only influenced by its neighbors.

Remark 1. Owing to the limited sensing ability, only a small
portion of individuals (e.g., that lie on the edge of the flock)
can directly sense the external stimuli and are influenced
by the external force 𝑢out𝑖 , while the motion of others is
merely governed by the internal force 𝑢in𝑖 from their nearby
neighbors [13]. Therefore, the internal force (also called the
local interaction rule) between individuals plays a key role in
the self-organized fission-fusiondynamics of flocking system.

According to the existing literature, most of the internal
interactions between individuals follow the cohesion, align-
ment, and separation rules [19], which can roughly be imple-
mented via the following position and velocity coordination
term

𝑢in𝑖 = 𝑢pos𝑖 + 𝑢vel𝑖 (4)

Here, the position coordination term 𝑢pos𝑖 usually deploys
an artificial potential function with long distance attraction
and short distance repulsion properties, i.e.,

𝑢pos𝑖 = ∑
𝑗∈𝑁𝑖(𝑡)

2( 𝑎󵄩󵄩󵄩󵄩󵄩𝑥𝑖 − 𝑥𝑗󵄩󵄩󵄩󵄩󵄩 −
𝑏󵄩󵄩󵄩󵄩󵄩𝑥𝑖 − 𝑥𝑗󵄩󵄩󵄩󵄩󵄩3) (5)

where 𝑎, 𝑏 > 0 are parameters that determine the strength of
the attraction and repulsion force, respectively.

In addition, 𝑢vel𝑖 is the velocity alignment term that
guarantees the order of flocking system

𝑢vel𝑖 = − ∑
𝑗∈𝑁𝑖(𝑡)

(V𝑖 − V𝑗) (6)

Equation (6) is the famous “velocity consensus” algorithm,
which iswidely used in the control protocol design of flocking
behavior for its mathematical elegance and simplicity [21].
However, such information consensus property (also called
the egalitarian strategy), although very effective in the fusion
behavior, gives a flock the tendency of group cohesion and
hampers the process of splitting [22], which may degrade its
movement flexibility and reaction rapidity, especially in the
presence of external stimulus such as multiple food source or
predator’s threat [16].

Motivated by this fact, we are trying to develop a novel
control framework for the self-organized fission-fusion
behavior of flocking system, which aims to realize the spon-
taneous fusion behavior in free space and the reactive fission
behavior under external stimuli in a unified fashion. In
particular, this framework is the supplement of the traditional
egalitarian strategy, which can deal with the external stimulus
in a more flexible and efficient way.

3. Self-Organized Fission-Fusion
Control Algorithm Based on
Intermittent Selective Interaction

In this section, a unified control algorithm for the self-
organized fission-fusion behavior of flocking system is pro-
posed by introducing an intermittent selective interaction
into the traditional egalitarian interaction framework, which
promotes the stimulus information transfer within the flock
and makes it more sensitive to environmental variation.

3.1. Intermittent Selective Interaction Based Control Frame-
work for the Self-Organized Fission-Fusion Behavior. The
self-organized fission-fusion behavior of flocking system is
virtually composed of two competing parts, where the fusion
behavior requires members to form a highly coherent and
ordered group, while the fission behavior needs to break up
the coherence and split intomultiple smaller subgroups [6, 8].

In order to represent the two seemingly contradictory
behaviors in a unified manner, an intermittent selective inter-
action is integrated into the velocity coordination term.
Together with the traditional egalitarian interaction based
velocity coordination approach, the control framework for
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the self-organized fission-fusion behavior of flocking system
can be generalized as

𝑢𝑖 = 𝑢pos𝑖 + 𝛼𝑢ega𝑖 + (1 − 𝛼) 𝑢sel𝑖⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑢vel
𝑖

+ 𝑔𝑖𝑢out𝑖 (7)

It is obvious that the control input 𝑢𝑖 is composed of three
parts.

(1) The position coordination term 𝑢pos𝑖 , with the char-
acteristics of long distance attraction and short distance
repulsion, follows (5) to coordinate the spatial distribution of
individuals.

(2) The velocity coordination term 𝑢vel𝑖 is to regulate the
alignment of individuals. Here, a hybrid velocity alignment
strategy, which combines both the egalitarian and selective
interaction based velocity coordination, is proposed via a
weighted parameter 𝛼:

𝑢vel𝑖 = −𝛼 ∑
𝑗∈𝑁𝑖(𝑡)

(V𝑖 − V𝑗)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑢
ega
𝑖

− (1 − 𝛼) (V𝑖 − V𝑙𝑖)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑢sel
𝑖

(8)

where V𝑙𝑖 is the velocity of the temporary leader that individ-
ual 𝑖 selects, and 𝛼 ∈ [0, 1] is the parameter adjusting the
weight between 𝑢ega𝑖 and 𝑢sel𝑖 .

(3)The external stimuli 𝑢out𝑖 have a variety of forms, such
as the attraction to a known food source or repulsion to an
obstacle or predator’s threat [23] (the detailed form of 𝑢out𝑖
will be given in Section 4).

Remark 2. In (8), the egalitarian interaction based velocity
coordination term 𝑢ega𝑖 drives individuals towards their aver-
age velocity to form a highly ordered and cohesive flock. On
the contrary, the selective interaction based velocity coordi-
nation term 𝑢sel𝑖 makes it follow the velocity of the temporary
leader, which thus endows individual 𝑖 the potential of split-
ting from the flock. Specifically, by adjusting the weighting
parameter 𝛼, the flock can exhibit the self-organized fusion-
fission behavior according to the environmental variation
adaptively.

Remark 3. It is also worth noting that in (8), the temporary
leader of individual 𝑖 is time varying and evolves according
to some leader selection rule, which is fundamentally different
from the traditional leader-follower approach as our method
is to promote the external stimulus information transfer
within the flock in an implicit manner.

In the following, we will investigate the temporary leader
selection rule from the perspective of promoting external
stimulus information transfer within the flock.

3.2. Selective Interaction Based Temporary Leader-Follower
Relationship. As has been discussed in Section 2, the self-
organized fission-fusion behavior of flocking system is the
direct (by directly sensing the external stimulus information)
or indirect (through collective propagation of changes in
behaviors by group members) response to external stimuli,
in which the information flow between individuals plays a
significant role [24].

In the free motion of flocking system, the informa-
tion flow is mainly conducted by averaging all the nearby
neighbors’ information [25]. However, it is suggested to be
more efficient to switch to the single neighbor interaction
mode when responding to some external stimuli with abrupt
acceleration or sudden turning [17]. Inspired by this fact, a
selective interaction rule is proposed from the perspective
of maximizing the external information transfer within the
flock

𝑙𝑖 = {max𝐶𝑖𝑗, 𝐶𝑖𝑗 > 𝐶∗, 𝑗 ∈ 𝑁𝑖 (𝑡)} (9)

where𝐶𝑖𝑗 denotes the influence of neighbor 𝑗 on individual 𝑖,
and 𝐶∗ is the threshold value for the selective interaction.

Remark 4. It can be observed form (9) that individual 𝑖 will
select themost influential neighbor 𝑙𝑖 as the temporary leader,
which is a widely seen phenomenon in nature as individuals
tend to follow the aged, experienced, or strong neighbors to
enhance the opportunity of survival [5, 8].

In the fission behavior of flocking system, individuals are
required to select the proper temporary leader to promote
the stimulus information transfer more efficiently. From the
biological visual perception mechanism [24], it is known that
individuals are usually very sensitive to the rapid variation
of nearby neighbors. On the other hand, members that are
moving with fast maneuvering often carry more external
stimulus information [14]. Hence, the influence of neighbor 𝑗
on individual 𝑖 can be described as

𝐶𝑖𝑗 = 𝜁𝑖𝑗 1󵄩󵄩󵄩󵄩󵄩𝑥𝑖 − 𝑥𝑗󵄩󵄩󵄩󵄩󵄩⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐴1

∙ 𝜅𝑖𝑗 (V𝑖 ∙ V𝑗)󵄩󵄩󵄩󵄩V𝑖󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩󵄩V𝑗󵄩󵄩󵄩󵄩󵄩⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐴2

(10)

where𝐴1 and𝐴2 are the influence of neighbor 𝑗 on individual𝑖 with respect to position and velocity, and 𝜁𝑖𝑗 and 𝜅𝑖𝑗 are
the coefficients of the position and velocity related influence,
respectively.

Additionally, a threshold value of 𝐶∗ is designed to
prevent the unexpected fission behavior such as stochastic
disordered splitting

𝐶∗ = 𝑒−𝛽𝜑𝑖 (11)

where𝛽 > 0 is the threshold value adjustment parameter, and𝜑𝑖 is the order parameter of individual 𝑖
𝜑𝑖 = 1𝑁𝑖 + 1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑁𝑖∑
𝑗=1

V𝑗󵄩󵄩󵄩󵄩󵄩V𝑗󵄩󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 (12)

with𝑁𝑖 being the number of nearby neighbors.

Remark 5. It can be seen in (11) that the specifically designed
threshold value 𝐶∗ is a monotone decreasing function with
respect to the order parameter 𝜑𝑖. When 𝜑𝑖 󳨀→ 0, the flock
moves in a disordered state; the threshold value𝐶∗ is high and
the selective interaction behavior is not likely to happen, and
the flock tends to perform the fusion behavior; when 𝜑𝑖 󳨀→
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1, the flock is in an ordered state and the threshold value𝐶∗ is small and the selective interaction behavior is easy to
occur, which will facilitate the external stimulus information
transfer and induce the fission behavior.

4. Simulation Studies

In this section, various numerical demonstrations are pro-
vided to verify the feasibility and effectiveness of the proposed
fission-fusion control algorithm.

4.1. Performance Metrics. In order to evaluate the per-
formance of the proposed control algorithm in the self-
organized fission-fusion behavior of flocking system, a series
of metrics are firstly defined as follows.

(1) Polarization Index (𝜓).Thepolarization index𝜓 represents
the velocity alignment degree of all the individuals in the flock

𝜓 = 1𝑁
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑁∑
𝑖=1

V𝑖󵄩󵄩󵄩󵄩V𝑖󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 (13)

where𝑁 is the number of all the individuals in the flock, and
V𝑖 denotes the velocity of individual 𝑖.

It can be seen from (13) that the polarization index
varies between [0, 1]. If the velocities of all the individuals
in the flock are aligned, 𝜓 ≈ 1; otherwise, if the velocity of
individuals are completely randomly distributed, 𝜓 ≈ 0.
Remark 6. It should be noted that the polarization index 𝜓
seems a little like the order parameter 𝜑𝑖 defined in (12). In
fact,𝜓 can be seen as the global order parameter of the whole
flocking system, while 𝜑𝑖 only demonstrates the local order
parameter of individual 𝑖.
Remark 7. The polarization index can well reflect the velocity
variation of individuals in the group fusion process. In the
group fission process, the velocity of individuals tends to
diverge and the polarization index will decline. However, the
declining of polarization index is not always corresponding
to the fission behavior. Therefore, based on the concept of
bimodality coefficient in statistical analysis theory [26], a
new performance metric, namely, differentiation index, is
introduced.

(2) Differentiation Index (𝜆). The differentiation index 𝜆
demonstrates the velocity divergence degree of individuals in
the flock

𝜆 = S2 + 1
K

(14)

where

S = (1/𝑁)∑𝑁𝑖=1 (V𝑖 − V)3
√((1/𝑁)∑𝑁𝑖=1 (V𝑖 − V)2)3 (15)

K = (1/𝑁)∑𝑁𝑖=1 (V𝑖 − V)4
((1/𝑁)∑𝑁𝑖=1 (V𝑖 − V)2)2 − 3 (16)

Here,S andK denote the skewness and kurtosis of individ-
uals’ velocity distribution, respectively.

Remark 8. According to the bimodality coefficient in statisti-
cal analysis theory, we can conclude from (14) to (16) that the
differentiation index, which reflects the velocity distribution
of individuals, also varies between [0, 1]. To be specific,
when 𝜆 < 5/9, the velocity of individuals is in unimodal
distribution. Specifically, when 𝜆 = 5/9, the velocity of
individuals is in uniform distribution. When 𝜆 > 5/9,
the velocity of individuals is in bimodal distribution, which
demonstrates that the velocity of individuals tends to diverge.
In particular, when 𝜆 = 1, the velocity of individuals is in
Bernoulli distribution and the velocity is completely diverged.
Therefore, the differentiation index 𝜆 is an effective metric to
evaluate the fission performance of flocking system.

4.2. Group Fusion and Fission Experiment. Suppose 50 indi-
viduals lie randomly within a 15 × 15m2 region and their
initial velocities are all zero. The sensory range of each
individual is 𝑅 = 5m. A group formation (fusion) and
multitarget tracking (fission) scenario is carried out to show
the entire process of group fusion and fission.

Initially, members in the flock aggregate from their
initial distributions and move in formation with a consistent
velocity [5 5]m/s under the control protocol (7). Two targets
lie on the moving path of the flock symmetrically and their
initial positions are [30 35]Tm and [35 30]Tm, respectively.

Two members (labelled as individuals 1 and 2) that
firstly sense the targets will initiate the fission behavior by
tracking the motion of targets towards opposite directions.
The tracking force follows

𝑢out𝑖 = −𝛾 [(𝑥𝑖 − 𝑥tar𝑖) + (V𝑖 − Vtar𝑖)] (17)

where 𝑥tar𝑖 and Vtar𝑖 are, respectively, the position and velocity
of target 𝑖, and 𝛾 > 0 is the gain of the tracking force.

Two targets, which are also governed by (1), remain
stationary until the flock gets into their sensing radius. If the
flock approaches the targets, the escaping behavior will be
activated, which follows

𝑢esctar = 𝑐esctar

𝑆∑
𝑗=1

exp(−󵄩󵄩󵄩󵄩󵄩𝑥tar𝑘 − 𝑥𝑗󵄩󵄩󵄩󵄩󵄩𝑙esc ) , 𝑘 = 1, 2 (18)

where 𝑆 = {𝑗 : ‖𝑥tar𝑘 − 𝑥𝑗‖ ≤ 𝑅tar, 𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑁} is the set
of flock member within the sensing radius of target 𝑘, 𝑙esc > 0
is the correlation length, and 𝑐esctar is the gain of the escaping
behavior.

The other simulation parameters are listed in Table 1 and
the simulation results are shown in Figures 2 and 3.

Figure 2 is the trajectory of the flocking system in the
fusion-fission process. To be specific, Figure 2(a) shows the
initial distribution of the flock and targets, where mem-
bers in the flock lie randomly in the predefined region
and the two targets lie on the moving path of the flock
symmetrically; Figure 2(b) gives the flock’s fusion process,
where individuals with random distribution aggregate into
a coherent group and organize into a highly ordered
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Table 1: Parameters in the simulation.

Parameters 𝑎 𝑏 𝜁𝑖𝑗 𝜅𝑖𝑗 𝛽 𝛼 𝛾 𝑙esc 𝑅tar 𝑐esctar

Value 20 3 0.5 2 2.5 0.5 12.3 15m 3m 5.5
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Figure 2: Trajectory of individuals in the fusion-fission process.The blue hollow circles denote the initial positions of individuals, black solid
circles demonstrate their final positions, green lines represent the trajectories of individuals, red solid circles are the position of two targets,
and gray solid circles are the individuals that firstly sense the targets.

formation to move towards the targets; Figure 2(c) shows the
beginning of the fission behavior when the flock encounters
two targets; the targets execute the escaping behavior once
they detect the flock and the two members that firstly sense
the targets try to split form the flock to track the targets
separately, and then the flock tends to split into two subgroups
under the fission-fusion control algorithm (7). Figure 2(d)
illustrates the final position of the flock and the targets, where
the coherent flock ultimately splits into two subgroups to
track their corresponding targets independently.

Figure 3 demonstrates the velocity variations of individ-
uals during the group fusion-fission process in both 𝑋 and

𝑌 axis. It can be seen that during 𝑡 = 0 ∼ 4s the flock is in
the fusion phase, and the velocities of all individuals tend to
converge to the same value. After that, the fission behavior
is activated and the velocity of members tends to diverge,
which will ultimately converge to that of the moving targets
(the velocities of the two targets are marked in red and black,
respectively).

Figure 4 shows the polarization index and differentiation
index variation in the group fusion and fission process, from
which one can clearly see that, in the group fusion process,
the polarization index 𝜓 increases from a very small value to
1 in finite time, which suggests that the flock aggregates from
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Figure 4: The polarization index and differentiation index in the
fusion-fission process.

random distribution to an ordered state and the velocities
of individuals are well aligned. The differentiation index 𝜆,
on the other hand, fluctuates around 0.5 and the velocity
of individuals is in unimodal or uniform distribution. After𝑡 = 4s, the flock fission process begins, and the polarization
index 𝜓 tends to decrease due to the velocity divergence of
individuals.Thedifferentiation index𝜆 begins to increase and
ultimately converges to 1, which illustrates that the velocity of
individuals is in bimodal distribution and the fission behavior
completes.

From the above simulation results, one can clearly see that
the proposed fission-fusion control algorithm (7) can make
the flock aggregate into a coherent group in free space and
segregate into multiple subgroups when a small portion of
members split from the flock.Therefore, the proposed control
algorithmguarantees both the order and flexibility of flocking
system, which is much more universal than the traditional
flocking control method and also very crucial for the survival
and evolution of flocking system.

4.3. Comparison with Conventional Egalitarian Strategy. In
order to demonstrate the superiority of the proposed con-
trol algorithm (7), a comparative simulation is carried out
with a typical consensus based control method proposed
in [19], where the velocity of members in the flock is
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Figure 5: Trajectory of individuals under the control algorithm of
[19].

coordinated according to (6).The other settings are the same
as Section 4.2.

Figure 5 demonstrates that the consensus based control
method can also achieve the fusion behavior, where scat-
tered distributed individuals aggregate into a highly ordered
formation. However, this approach is unable to realize the
fission behavior when two targets move towards opposite
directions. Only the two individuals that sense the targets can
split from the flock and track the moving targets; the other
members still move along their original path. This is largely
due to the inherent coherence property of the consensus
based velocity coordination term, which hampers the flock’s
splitting process and degrades its efficiency in response to
external stimuli.

Figure 6 shows the velocity of individuals in both𝑋 and𝑌
axis, where green lines are the velocity curves of individuals
that are not directly influenced by external stimuli, and red
and black lines are the velocity curves of individual 1 and
individual 2, respectively. It can be clearly seen that members
in the flock firstly aggregate into a coherent group under
the consensus based control scheme, and their velocities
eventually converge to the same value. However, when
external stimuli act on partial members of the flock, only
two individuals split from the flock, and the rest of the
flock remain unchanged and keep their original movement
direction.

Figure 7 shows the polarization index and differentiation
index variation under the control algorithm of [19]. In the
group fusion process, both the polarization index and differ-
entiation index variation are the same as those of Figure 4,
which illustrates that the control algorithm of [19] can well
accomplish the fusion behavior. In the group fission process,
the polarization index 𝜓 remains about 1 (the whole flock is
generally in an ordered state). However, the differentiation
index is not significantly increased (fluctuates around 0.55),
which implies that the velocity of individuals is still in
unimodal distribution and thus the fission behavior does not
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Figure 7:Thepolarization index anddifferentiation index under the
control algorithm of [19].

occur. Therefore, the control algorithm of [19] cannot realize
the self-organized fission behavior in the presence of external
stimuli.

Compared with the fusion-fission control algorithm pro-
posed in this paper, the traditional velocity consensus based
control method hampers the external information transfer
within the flock and is unable to realize the self-organized
fission behaviorwhenflock encounters some external stimuli.
Therefore, our approach is more efficient in promoting local
stimulus information transfer and makes the flock more
adaptable to the dramatically changing environment.

4.4. The Reunion/Rejion Capability of Flocking System. The
simulation in Section 4.2 demonstrates the self-organized
fusion and fission capabilities of flocking system. However,
whether the separated subgroups can reunite into a single
flock still remains unknown. Here, an additional simulation
is carried out to verify the reunion capability of the flock.

The two targets are supposed to disappear at 𝑡 = 8s.
After that, an additional navigational term is incorporated
into algorithm (7) with the following form

𝑢𝑖 = 𝑢pos𝑖 + 𝛼𝑢ega𝑖 + (1 − 𝛼) 𝑢sel𝑖⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑢vel
𝑖

+ 𝑢nav𝑖 + 𝑔𝑖𝑢out𝑖 (19)

where 𝑢nav𝑖 = −󰜚(V𝑖 − Vnav𝑖), 𝑖 = 1, 2, with 󰜚 being the
navigational gain and Vnav𝑖 being the navigational velocity of
subgroup 𝑖.
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Figure 8: The reunion capability of the flocking system after
splitting.

Here, we let 󰜚 = 10, Vnav1 = [−5, 5]m/s, and
Vnav2 = [5, −5]m/s. The navigational term 𝑢nav𝑖 drives the
two subgroups to move close to each other. Once they are
within the sensing range of any individuals in the flock, the
navigation termdisappears and the flock begins to implement
the reunion behavior based on the local interactions only.

Figure 8 shows the reunion behavior of the flocking sys-
tem after splitting, which suggests that the proposed fission-
fusion coordination algorithm (7) can make the separated
subgroups reunite into a coherent single flock.This is because
when two targets disappear, the external stimuli acting on the
flock no longer exist, and the navigational term drives the
two subgroups to move close to each other. Once they are
within the sensing range of any individuals in the flock, the
navigation term disappears and individuals determine their
motion based on the local interaction with nearby neighbors
only. Meanwhile, there is no abrupt turning or acceleration
of any single individual and thus the selective interaction
behavior will not occur, whichmakes the selective interaction
based velocity coordination term lose efficacy in the fission-
fusion control algorithm (7). Therefore, they will execute the
group fusion law and regather into a single flock as long as
they are in the sensing range of each other.

4.5. Discussion: The Influence of Parameters on the Fission-
Fusion Behavior. As seen in Table 1, there are many parame-
ters in the fission-fusion control algorithmof flocking system,
which together determine the performance of fission-fusion
behavior. In order to better illustrate the influence of themain
parameters on the fission-fusion behavior of flocking system,
a detailed discussion is given as follows.

4.5.1. The Influence of Parameters 𝑎 and 𝑏 on Flock’s Density.
The parameters 𝑎 and 𝑏 in the artificial potential function (5)
is to determine the relative distance between individuals in
the steady state. From (5) we know that 𝑑0 = √𝑏/𝑎 is the
equilibrium distance between the attraction and repulsion
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Figure 9: The polarization index of flocking system with different𝛼.

forces. If 𝑑𝑖𝑗 > √𝑏/𝑎, the attraction force will be dominant,
which drives individuals to move towards each other and the
flock size will shrink. On the contrary, if 𝑑𝑖𝑗 < √𝑏/𝑎, the
repulsion forcewill be dominate and individuals tend tomove
away from each other; meanwhile the group size will expand.
Therefore,√𝑏/𝑎 is relevant to the density of flocking system.

On the other hand, if the equilibrium distance is larger
than the sensing range 𝑅 of each individual, i.e., √𝑏/𝑎 > 𝑅,
members in the flock are unable to get the information of
neighbors and the fusion behavior cannot be guaranteed.
Therefore, the feasible range of parameters 𝑎 and 𝑏 should
satisfy √𝑏/𝑎 ∈ (0, 𝑅].
4.5.2.The Influence of Parameter𝛼 on the Polarization Index𝜓.
It is known that the parameter 𝛼 in (8) plays a significant role
in the fusion-fission control of flocking system, as it balances
theweights of egalitarian interaction and selective interaction
in the velocity coordination of individuals. Here, an extensive
investigation is carried out to demonstrate the influence of
parameter 𝛼 on the polarization index 𝜓 of fission-fusion
behavior.

Figure 9 shows the polarization index variation with
different 𝛼 in the flock fission-fusion process, where the flock
is expected to execute the fusion behavior from 𝑡 = 0 ∼ 4s and
perform the fission behavior afterwards. We can see that if 𝛼
is high (e.g., 𝛼 = 1), the polarization index increases rapidly
from 0.1 ∼ 0.9, which shows that the flock aggregates from
random distribution to an ordered state and the formation
process is accomplished. However, the polarization index
still maintains a high value (about 0.9) when the fission
behavior begins, suggesting that the flock still moves in a
coherent formation and the group fails to achieve the fission
behavior. With the decline of 𝛼, the polarization index in the
fission process decreases synchronously, which shows that the
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Figure 10:Thedifferentiation indexof flocking systemwith different𝜁𝑖𝑗.

fission behavior tends to happen. If 𝛼 further decreases, the
polarization index will keep a low value in the fusion process
and group fusion behavior is not likely to happen.Therefore, a
moderate𝛼 (about 0.5) canmake the flock perform the fusion
and fission behavior simultaneously and endows the flock the
ability of implementing the fusion behavior in free space and
spontaneous fission behavior under external stimuli.

From the above results, it can be concluded that the
parameter 𝛼 realizes the trade-off of exploration (external
stimulus information) and exploitation (the existing infor-
mation in flocks) of flocking system in the group fission and
fusion process. As 𝛼 increases, the “exploitation” behavior
is highlighted, and the flocking system tends to use its
internal information to aggregate into a coherent group.
On the contrary, with the decrease of 𝛼, the “exploration”
behavior is strengthened and the flock tends to split via the
external information. In nature, exploration and exploitation
are a very commonly seen phenomenon in flocking system,
where exploration enhances the possibility of finding food or
decreases the rate of being prey, while exploitation maintains
the original motion of flocking system and keeps its stability.
Therefore, the method proposed in this paper is consistent
with the characteristic of natural flocking system, which is
more adaptable than the traditional flocking control method.

4.5.3. The influence of Parameters 𝜁𝑖𝑗 and 𝜅𝑖𝑗 on the Differenti-
ation Index 𝜆. The parameters 𝜁𝑖𝑗 and 𝜅𝑖𝑗 are the coefficients
of the position and velocity related influence in (10), which
determine the temporary leader to follow and influence the
fission behavior. Here, a comprehensive study is performed
to show the influence of parameters 𝜁𝑖𝑗 and 𝜅𝑖𝑗 on the
differentiation index 𝜆.

From Figure 10 we can see that the differentiation index
is in bimodal distribution (the fission behavior emerges)
if the coefficient of the position related influence term
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Figure 11:The differentiation index of flocking systemwith different𝜅𝑖𝑗.

𝜁𝑖𝑗 ∈ [0.35, 1]. Specifically, the fission behavior is well
accomplished if 𝜁𝑖𝑗 = 0.5 (the differentiation index 𝜆 ≈ 1
and the velocity of individuals is in Bernoulli distribution).
If 𝜁𝑖𝑗 < 0.5 (e.g., 𝜁𝑖𝑗 = 0.35), the fission behavior can also be
achieved, although the differentiation index 𝜆 is less than 1.
However, if 𝜁𝑖𝑗 continues to decline, the differentiation index𝜆 tends to be less than 5/9; the velocity of individuals is
in unimodal distribution and the fission behavior does not
occur. On the other hand, if 𝜁𝑖𝑗 > 0.5, we can see that 𝜆 > 5/9.
Although the velocities of individuals are diverged, it may not
guarantee a successful fission behavior because 𝜆 is much less
than 1.

Based on the above discussion, we can conclude that
relatively moderate position correlation is beneficial for
the fission behavior of flocking system. Too large position
correlation will make individuals follow the motion of its
nearest neighbor, which may neglect the stimulus informa-
tion hidden in the neighborhood and cause the failure of
fission behavior. However, if the position correlation is too
small, the fission behavior may also fail because the flock
may be in a disordered state without considering the position
distribution of nearby neighbors.

In Figure 11, it is observed that the fission behavior is
very sensitive to the variation of the coefficient of the velocity
related influence term 𝜅𝑖𝑗. If 𝜅𝑖𝑗 is small (e.g., 𝜅𝑖𝑗 ≤ 2),
the fission behavior can be accomplished. However, with
the increase of 𝜅𝑖𝑗, the differentiation index 𝜆 declines
dramatically, which cannot achieve the fission behavior of
flocking system. The main reason lies in that too strong
velocity correlation maymake individuals too sensitive to the
velocity variation of nearby neighbors, and hence the order
and stability of the flocking system cannot be guaranteed.

Therefore, a relatively small 𝜅𝑖𝑗 can make individuals
obtain appropriate velocity correlation with nearby neigh-
bors, meanwhile maintaining the order of the flock.
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Figure 12: The polarization index of flocking system with different𝛽.
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4.5.4.The Influence of Parameter 𝛽 on the Polarization Index𝜓
andDifferentiation Index 𝜆. As is shown in (11), the threshold
value 𝐶∗ for the fission behavior is time varying along with
the variation of the order parameter 𝜑𝑖, where the adjustment
parameter 𝛽 is to determine the steepness of the threshold
value curve. In the following, numerical simulations are
performed to show the influence of parameter 𝛽 on the
polarization index 𝜓 and differentiation index 𝜆.

Figures 12 and 13 show the polarization index and differ-
entiation index variation with different 𝛽. It can be clearly
observed that when 𝛽 is small (e.g., 𝛽 < 1), the polarization
index𝜓 increases from 0 to 1 rapidly, whichwell accomplishes
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the fusion behavior. Meanwhile, the differentiation index 𝜆
fluctuates around 0.5, suggesting that the velocity of individ-
uals is in unimodal distribution. However, the polarization
index and differentiation index still keep unaltered in the
group fission process, which illustrates the failure of fission
behavior.Therefore, too small 𝛽 is unable to realize the fission
behavior. The main reason lies in that when 𝛽 is small,
threshold value curve is complanate and 𝐶∗ maintains a high
value, which prevents the occurrence of the fission behavior.

From Figures 12 and 13, we can also see that with the
increase of 𝛽 (1 < 𝛽 < 2), the group fusion behavior can be
achieved (i.e., 𝜓 ≈ 1, 𝜆 ≈ 0.5). In the group fission process
(𝑡 > 4s), the polarization index𝜓 tends to declinemoderately,
while the differentiation index 𝜆 begins to increase (𝜆 > 5/9),
which implies that the velocities of individuals are in bimodal
distribution and hence the fission behavior occurs.

Moreover, if 𝛽 continues to increase, the threshold value
curve becomes steep and𝐶∗ tends to decline.Thus, the fission
behavior becomes easy to occur and the flock tends to split
in a stochastic fashion. Therefore, the order of the flock is
not well maintained and both the fusion and fission behavior
cannot be accomplished in an ordered way.

5. Conclusions and Future Work

This paper investigates the self-organized fission-fusion con-
trol problem of flocking system. A hybrid velocity regulation
mechanism, which combines the selective interaction based
velocity coordination into the traditional average consen-
sus rule, is proposed to endow a flock the capability of
aggregating in free space and spontaneous splitting in the
presence of external stimulus. Various numerical simulations
demonstrate the feasibility and effectiveness of the proposed
method in flocking fusion-fission control. This paper bridges
the gap between flock fission and fusion behavior, which is
expected to provide new insight into the coordinated control
of flocking system.

In this paper, there are many parameters in the self-
organized fission-fusion control algorithm of flocking system
and we conduct the parameter selection procedure in a trial-
error method. Although the influences of the main parame-
ters on the performance of the fission-fusion behavior are dis-
cussed in detail, how to select the appropriate parameter set in
an automatic and efficient way remains largely unknown. In
the future, we will investigate the control parameter selection
method via someoptimization techniques, such as the genetic
algorithm.
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